Abstract

The late prenatal and early postnatal development of the organ of Corti were studied in the horseshoe bat (Rhinolophus rouxi) by using scanning and transmission electron microscopy. Arrangements and dimensions of stereocilia bundles, together with their contacts with the tectorial membrane, were found to be adult-like shortly before birth, and thus before the biological onset of hearing (3-5 days after birth). During the first postnatal week, there were baso-apical gradients in disappearing kinocilia on inner hair cells (IHC), microvillis of supporting cells, and marginal pillars. The lower basal cochlear turn was mature with respect to these regressing structures at 3 days after birth, the apical turn at 10 days after birth. At birth, cytodifferentiation was found to be completed, and the tunnel of Corti and innermost spaces of Nuel had opened. The ultrastructure of IHCs was not markedly different from that at later ages. In outer hair cells (OHC), the adult-like regular arrangement of a single layer of subsurface cisternae and pillars was seen as soon as protrusions of supporting cells had withdrawn from the lateral wall of OHCs (basal turn at birth and throughout the cochlea 2 days after birth). Numerous efferent endings contacted the somata of IHCs up to the second postnatal week. Since the medial olivocochlear system is absent in horseshoe bats, the adult-like innervation pattern of OHCs was established at the biological onset of hearing. During the first 2 postnatal weeks, the cytoskeleton of pillar and Deiters cells, and the specialized Deiters cups developed. The organ of Corti appeared adult-like at 14 days, apart from the persistence of a reduced tympanic cover layer attached to the basilar membrane. Morphological data support physiological findings that the first broadly tuned auditory responses arise from the basal turn. The distinct low to high frequency gradient in development of sensitivity during the first 2 postnatal weeks of the horseshoe bat was not, however, matched by morphological gradients, and it would appear that the development of the cytoskeleton of supporting cells contributed to the establishment of tuning in the auditory fovea. Adult-like morphology of the organ of Corti coincided with the emergence of sharply tuned responses from the auditory fovea, but there was no clear-cut correlate for the shift in tuned foveal frequency representation that occurred during the following 3 weeks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call