Abstract

The semiconductor industry has been demanding film thickness reference material for films other than thermally grown silicon dioxide for sometime. To meet this challenge, Nitride Film Thickness Standard (NFTS) has been developed in four nominal thickness values, 20.0 nm, 90.0 nm, 120.0 nm and 200.0 nm. These are silicon nitride (Si 3 N 4 ) films on silicon crystal substrate. Work is underway to develop a 9.0 nm standard. Thin nitride films are particularly needed for calibration of the thickness of nitride layers in capacitors and isolation masks for LOCOS (local oxidation of silicon). The reference material is certified for derived film thickness. The study consists of measurements made on four different sets of wafers that included patterned and unpatterned wafers. The measurements made on these wafer sets were used for answering issues related to film stability and cleaning. The stability study includes the search for a cleaning process that will restore a prior surface condition. On two sets of wafers two different types of cleaning procedures were used. Results indicate that a sulfuric acidmegasonic clean will etch the nitride film while an isopropyl alcohol clean followed by a deionized water rinse can be used over and over again. The third set of wafers was never cleaned and measurements were made on these over a period of two years. The last set of wafers is patterned. These are cleaned prior to measurement. Results show that LPCVD silicon nitride films are stable and can be used with confidence over a long period of time for calibrating optical metrology instruments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.