Abstract

One of the main reasons for oil-field pipeline failure is groove corrosion. The residual life of such pipelines is estimated based on defectoscopy corrosion rate—a ratio of the formed «groove» depth to the pipeline operation start time. In this case, it is supposed that, in the future, the «groove» will deepen at the same rate for the remaining period of the pipe’s operation. However, sometimes, oil-field pipeline operation experience shows that the remaining time of safe operation is much less than the calculated one. In this article, such a discrepancy is explained via the acceleration of the groove corrosion rate in the process of «groove» deepening due to the increasing level of mechanical stresses in the surrounding metal, which intensifies the corrosion process as a result of the mechanochemical effect. Based on a literature analysis and calculated data, the kinetic equation of the groove corrosion rate for an oil-field pipeline is proposed, which accounts for the acceleration of the process rate as the pipeline is operated and allows the more accurate estimation of its remaining service life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.