Abstract

The development of the interpeduncular nucleus (IPN) in primates was studied in rhesus monkey with 3H-thymidine autoradiographic, Nissl and Golgi methods and in humans in histological preparations from embryos and fetuses of different ages. Autoradiographic analysis demonstrated that the neurons of the monkey IPN underwent their final cell division between postconception day 36 (E36) and E42, which corresponds to Stages 17 through 21 of Hendrickx and Sawyer. Autoradiograms of monkeys sacrificed at various short intervals following exposure to a pulse of 3H-thymidine showed that IPN neurons were generated in the proximity of the ventricular surface near the confluence of the 3rd ventricle and cerebral aqueduct, migrated ventrally along the midline and then spread laterally after reaching the ventral midbrain, where IPN was first recognized at E45 (Stage 23). The distribution of successively generated neurons in autoradiograms revealed caudal to rostal and lateral to medial spatiotemporal gradients. Differentiation of IPN neuronal size and development of Nissl substance began in rhesus monkey only after postmitotic cells had reached their destination and seemed to be pronounced mainly through E104. However, growth of the dendrites and elaboration of their side branches as seen in Golgi impregnations progressed gradually from E81 to birth (E165) and perhaps even later. Analysis of histological preparations of a series of human embryos and fetuses was used to derive similar information indirectly, since the autoradiographic method cannot be applied to man. It was found that IPN neurons in human probably underwent their final division between Carnegie Stage 17 and 21. Similarly, as in monkey, postmitotic cells in human IPN displayed an inverted fountain pattern of cellular migration. IPN could first be delineated at Stage 23. There was evidence for both caudal to rostral and lateral to medial spatiotemporal gradients in the human, as in the monkey. Thus, in monkey and human, all IPN neurons are generated within the first quarter of intrauterine life and there is remarkable similarity in the timing, tempo and pattern of IPN neuronal differentiation in both species, indicating the validity of using nonhuman primates as an experimental model for understanding the development of this structure in man.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.