Abstract
The hot-end components of aero-engines and gas turbines not only require high-temperature alloys capable of withstanding extreme temperatures, but also demand welds with high-temperature-resistant properties. In this study, the CALPHAD method was employed, utilizing the thermodynamic theory of phase diagrams with Thermo-Calc software and the corresponding database, to design the interlayer composition for superalloy TLP diffusion connections. The optimization aimed to determine the interlayer material's solidus-liquidus and compound phase content, resulting in the selection of a new nickel-based interlayer material containing B as MPD, with Co and W as strengthening elements. Using GH3230 alloy as the research subject, TLP diffusion bonding experiments were conducted at a welding temperature of 1200 °C with a holding time of 4 h. The weld zone exhibited no defects, and the microstructure was identical to that of the GH3230 base metal, consisting entirely of a solid solution. High-temperature tensile tests revealed that fractures consistently occurred in the GH3230 base metal, indicating that the weld's strength significantly exceeded that of the base metal. The average tensile strength of GH3230 high-temperature alloy bar tensile simulated specimens is 899 MPa at room temperature and 213 MPa at high temperature. In addition, the 90° three-point bend test showed no cracking in the weld area, indicating adequate plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.