Abstract

This study investigates the development of the primary and secondary jaw joints in humans, focusing on their concomitance and subsequent disconnection. Development begins with the primary temporomandibular joint as a connection between Meckel's cartilage and the incus, while the secondary temporomandibular joint develops anteriorly as an articulation between the mandibular condyle and the mandibular fossa. Previous research in mice has provided insights into the morphogenesis of these joints, but their specific development of the 3D morphogenesis in humans remains unclear. To address this gap, histological serial sections of embryos and fetuses ranging from 19 to 230 mm crown-rump length were analyzed. The 3D morphogenesis of the middle ear and the temporomandibular joint was examined, paying attention to the morphological characteristics, timing, and potential mechanisms of movement and disconnection. The primary jaw joint is initially formed at 25 mm (8th week), followed by the appearance of the secondary jaw joint arising at 87 mm (12th week). Both joints persist present simultaneously, until a separation occurs between 150 and 230 mm (18th-24th week). It is remarkable that both joints remain concomitant and function somehow for a period exceeding 6 weeks, with the mechanism of their separation still unclear. Understanding the precise timing and functional movements involved with these temporarily connected joints is crucial for comprehending the overall development of the temporomandibular joint. Further research is needed to explore the molecular and cellular processes underlying these developmental changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call