Abstract

IntroductionThe lateral geniculate nucleus (LGN) is the major relay center of the visual pathway in humans. There are few quantitative data on the morphology of LGN in prenatal infants. In this study, using serial brain sections, the author investigated the morphology of this nucleus during the second half of fetal period. Material and methodsEleven human brains were obtained at routine autopsy from preterm infants aged 20–39 postmenstrual weeks. After fixation, the brain was embedded en bloc in celloidin and cut serially at 30 μm in the horizontal plane. The sections were stained at regular intervals using the Klüver–Barrera method. ResultsAt 20–21 weeks, the long axis of LGN declined obliquely from the vertical to horizontal plane, while a deep groove was noted on the ventro-lateral surface of the superior half. At this time, an arcuate cell-sparse zone appeared in the dorso-medial region, indicating the beginning of lamination. From 25 weeks onwards, the magnocellular and parvocellular layers were distinguishable, and the characteristic six-layered structure was recognized. The magnocellular layer covered most of the dorsal surface, and parts of the medial, lateral, and inferior surfaces but not the ventral and superior surfaces. Nuclear volume increased exponentially with age during 20–39 weeks, while the mean neuronal profile area increased linearly during 25–39 weeks. ConclusionHuman LGN develops a deep groove on the ventro-lateral surface at around mid-gestation, when the initial lamination is recognized in the prospective magnocellular layer. Thereafter, the nuclear volume increases with age in an exponential function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.