Abstract
The GPR17 receptor, expressed on oligodendroglial precursors (OPCs, the myelin producing cells), has emerged as an attractive target for a pro-myelinating strategy in multiple sclerosis (MS). However, the proof-of-concept that selective GPR17 ligands actually exert protective activity in vivo is still missing. Here, we exploited an iterative drug discovery pipeline to prioritize novel and selective GPR17 pro-myelinating agents out of more than 1,000,000 compounds. We first performed an in silico high-throughput screening on GPR17 structural model to identify three chemically-diverse ligand families that were then combinatorially exploded and refined. Top-scoring compounds were sequentially tested on reference pharmacological in vitro assays with increasing complexity, ending with myelinating OPC-neuron co-cultures. Successful ligands were filtered through in silico simulations of metabolism and pharmacokinetics, to select the most promising hits, whose dose and ability to target the central nervous system were then determined in vivo. Finally, we show that, when administered according to a preventive protocol, one of them (named by us as galinex) is able to significantly delay the onset of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. This outcome validates the predictivity of our pipeline to identify novel MS-modifying agents.
Highlights
Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune disease of the central nervous system (CNS), characterized by demyelination [1,2]
HTS of a large database of commercially available lead-like compounds provided by Asinex was performed on the GPR17 three-dimensional model, driving the molecular docking calculations into the binding site identified through MOE, encompassing the residues previously identified as crucial for the recognition of orthosteric GPR17
We did so using class-A G protein-coupled receptor (GPCR) comparative modelling, a well-known bioinformatics strategy aimed at gathering novel structural information on this receptor family that encompasses about 70% of all drug-targets [48,49]
Summary
Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune disease of the central nervous system (CNS), characterized by demyelination [1,2]. MS starts as an autoimmune reaction leading to acute CNS inflammation, followed by plaques of demyelination [3] and axonal damage. The latter might be consequent to demyelination, but can occur independently of myelin destruction [4,5] eventually leading to axonal atrophy and impaired neuronal signal. Aptuit srl has been recruited to perform in vivo DMPK experiments as professional service under a commercial agreement and did not provide any financial support to the research. This does not alter our adherence to PLOS ONE policies on sharing data and materials
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.