Abstract

Development of the upper dentition in Alligator mississippiensis was investigated using a close series of accurately staged and aged embryos, hatchlings, and young juveniles up to 11 days posthatching, as well as some young and old adult specimens. Studies from scanning electron microscopy, light microscopy, acetate and computer reconstructions, radiography and macroscopy were combined to elucidate the details of embryonic dental development, tooth initiation pattern, dentitional growth, and erupted functional dentition. The results were compared with those from the lower jaw and related to the development of other craniofacial structures. Approximately 17 early teeth in each jaw half develop as surface teeth, of which 13 project for 1 to 12 days before sinking into the mesenchyme. The first three teeth initiate directly from the oral epithelium at Ferguson stages 14-15 (days 15-19 after egg laying), before there is any local trace of dental lamina formation. All other teeth develop from a dental prolamina or lamina; and with progressive lamina development, submerged teeth initiate from the aboral end leading to the formation of replacement teeth. All teeth form dentin matrix, but 12 early teeth do not form enamel. Approximately 20 embryonic teeth are resorbed, 6 are transitional, and 42 function for longer periods after hatching. The embryonic tooth initiation pattern (illustrated by defining a tooth position formula) does not support the previous models of Odontostichi, Zahnreihen, and Tooth Families, each of which postulates perfect regularity. Up to three interstitial tooth positions develop between sites of primary tooth initiation, and families with up to five generations at hatching are at first arbitrarily defined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call