Abstract
The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of defense-related transuranic (TRU) waste. US Environmental Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound basis that the WIPP disposal system will effectively contain long-lived alpha-emitting radionuclides within its boundaries for 10,000 years following closure. In 1996, the DOE submitted the 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant (CCA) to the EPA. The CCA proposed that the WIPP site complies with EPA's regulatory requirements. Contained within the CCA are descriptions of the scientific research conducted to characterize the properties of the WIPP site and the probabilistic performance assessment (PA) conducted to predict the containment properties of the WIPP disposal system. In May 1998, the EPA certified that the TRU waste disposal at the WIPP complies with its regulations. Waste disposal operations at WIPP commenced on 28 March 1999. The 1996 WIPP PA model of the disposal system included conceptual and mathematical representations of key hydrologic and geochemical processes. These key processes were identified over a 22-year period involving data collection, data interpretation, computer models, and sensitivity studies to evaluate the importance of uncertainty and of processes that were difficult to evaluate by other means. Key developments in the area of geochemistry were the evaluation of gas generation mechanisms in the repository; development of a model of chemical conditions in the repository and actinide concentrations in brine; selecting MgO backfill and demonstrating its effects experimentally; and, determining the chemical retardation capability of the Culebra. Key developments in the area of hydrology were evaluating the potential for groundwater to dissolve the Salado Formation (the repository host formation); development of a regional model for hydrologic conditions; development of a stochastic, probabilistic representation of hydraulic properties in the Culebra Member of the Rustler Formation; characterization of physical transport in the Culebra; and, the evaluation of brine and gas flow in the Salado. Additional confidence in the conceptual models used in the 1996 WIPP PA was gained through independent peer review in many stages of their development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.