Abstract

In a number of industries: oil and gas, chemical and nuclear industries, the task of controlling multiphase flow regimes arises. In the nuclear and chemical industries, the flow regime directly affects the nature of technological processes and their safety. In the oil and gas industry, the products extracted from wells are usually a mixture of oil, water and gas, and the task of monitoring the flow regime is related to compliance with the permissible parameters of pumping and control equipment. When using multiphase flowmeters of the flow type, the algorithms for calculating phase flow rates in a multiphase flow are very sensitive to a violation of the uniformity and homogeneity of the measured flow. Excessive noise of the signal of pressure sensors, volume content and flow caused by projectile, cork or stratified modes can negatively affect the accuracy of measurements. As a rule, flow mode maps are used when determining the current mode. This approach is based on the calculation of a number of dimensionless flow parameters (Froude number, Lockhart–Martinelli parameter, etc.). In the case of a dynamically changing flow, this approach may not be suitable. For a more accurate and reliable determination of flow modes, it is proposed to use a direct method of analyzing the spatial distribution of phases in the flow and recognizing the type of flow using artificial convolutional neural networks. This approach allows you to get rid of classification errors and get more accurate information about the flow. The aim of the study is to develop a technique for neural network analysis of images of a multiphase flow with subsequent determination of its type. In the course of the work, approaches to the formation of a training sample are considered, the search for the optimal structure of the neural network is carried out and an accuracy assessment is given for the classification of multiphase flow modes by a convolutional neural network. The study was carried out on two types of data: 1) synthetic images obtained using numerical simulation of multiphase flows, and 2) experimentally obtained flow images on a multiphase flow stand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call