Abstract

Chilled water systems constitute a major portion of energy consumption in air conditioning systems of the large buildings and process cooling of the manufacturing plants. These systems do not operate optimally in most of the cases because of the operating parameters set and/or the components used. The Chilled water system analysis tool software (CWSAT) is developed as a primary screening tool for energy evaluation. This tool quantifies the energy usage of the various chilled water systems and typical measures that can be applied to these systems to conserve energy. The tool requires minimum number of inputs to analyze the component-wise energy consumption and incurred overall cost. Both air-cooled and water-cooled systems can be analyzed with this tool; however, this paper focuses on water-cooled systems. The tool uses weather data of the chilled water system location and loading schedules to calculate the chilled water system energy consumption. The Air-Conditioning and Refrigeration Institute (ARI) standard 550/590 typical loading schedule is also incorporated for the chiller(s) loading. The tool is capable of comparing economics by analyzing the energy consumption and relevant cost of the existing system and the new system with cost reduction opportunities considered like: (1) increase chilled water temperature set point, (2) lowering the condenser cooing water supply temperature set point, (3) replace chiller(s), (4) Apply variable speed control to chilled and/or condenser water pumps, (5) upgrade cooling tower fan speed control, (6) Use free cooling when possible for water-cooled systems. The savings can be calculated separately for each cost reduction opportunity or can be combined. The economics comparison can be a primary decision criterion for further detailed engineering and cost analysis related with system changes. The comparison between actual system energy consumption and CWSAT results are also shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.