Abstract

As a regenerative energy source, tidal energy can significantly contribute to greenhouse gas reduction, even though the potentially achievable energy output is lower than that of wind or solar energy. The decisive advantage of tidal turbines lies in the simply and reliably predictable energy output. However, their commercial use has so far been impeded by the fact that on the one hand complex mechanical systems are required to convert energy of tidal currents and on the other hand multi-axial loading conditions caused by turbulent ocean currents act on the turbine. For this reason, field tests on prototypes are an essential part of the development strategy to ensure operational reliability. However, in-field tests do not allow for accelerated lifetime testing, so that test bench experiments are becoming an increasingly important alternative. Today, established procedures for testing the turbines main bearings and gearing system are already available, both for setting up the required test configuration and for determining the corresponding test loads. However, the use of advanced calculation methods, such as the finite element method for stress calculation, requires a deep understanding of the examined components and hinders the transfer of the approaches to other components.To simplify the process of test loads determination, a general methodology is presented, which relies exclusively on standardized empirical calculation rules. Doing this, fatigue equivalent loads can be determined for any component in a simple process. It was shown that the achieved reduction in complexity opens further potential for test acceleration, since several components can be tested simultaneously.

Highlights

  • Tidal turbines theoretically achieve a fully predictable energy output by accessing energy of the tidal flow [1]

  • Three-dimensional ocean currents cause complex loading situations on the rotor which leads to many different load-superposition states in the drivetrain [5]

  • Drive train interactions combined with complex loading situations require simplified load assumption in the technical design process

Read more

Summary

Availability of data and material Not applicable

Code availability The developed code is available upon request by contacting the correspondence author. Ihrem kommerziellen Einsatz steht bisher jedoch entgegen, dass einerseits komplexe mechanische Systeme zur Energiewandlung der Gezeitenströmung erforderlich sind und anderseits mehraxiale Lastzustände infolge turbulenter Meeresströmung auf die Turbine wirken. Zur Absicherung der Betriebssicherheit sind aus diesem Grund Untersuchungen an Prototypen im Feldeinsatz ein fester Bestandteil der Entwicklungsstrategie. Zur Prüfung der Komponenten Hauptlager und Getriebeverzahnungen stehen bereits heute etablierte Vorgehensweisen sowohl zum Aufbau der erforderlichen Prüfkonfiguration als auch zur Ermittlung entsprechender Prüflasten zur Verfügung. Der Einsatz höherer Berechnungsverfahren, wie der finiten-Elemente Methode zur Spannungsberechnung, erfordert jedoch ein tiefes Verständnis der untersuchten Komponenten und erschwert die Übertragung der Ansätze auf andere Komponenten. Um den Prozess zur Ermittlung von Prüflasten zu vereinfachen wird aus diesem Grund eine allgemeine Methodik vorgestellt, die ausschließlich auf genormte empirische Berechnungsvorschriften zurückgreift. Dass die resultierende Komplexitätsreduktion weiteres Potential zur Prüfbeschleunigung eröffnet, da mehrere Komponenten gleichzeitig getestet werden können

Introduction
Method
Research object and experimental configuration
Simulation of rotor loads
Determining the amount of load cycles
Determining the amount of bearable load cycles
Load superposition
Discussion: similarities to wind power drives
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call