Abstract
A polypropylene-based binder system was used to injection mould test bars containing 65 vol % aluminium powder. Specimens, 3 and 6 mm thick, made from these bars were used for pyrolytic binder removal experiments in static air and nitrogen. The development of a carefully defined experimental procedure for the determination of the heating rate at which binder removal can be carried out at a given temperature without the creation of macro defects is fully described. The use of isothermal heat treatments during pyrolysis are also considered and results are presented as temperature-heating rate diagrams for each atmosphere and thickness investigated. These diagrams show a lower and an upper boundary. Defect formation occurs if the temperature-heating rate relationship lies between the boundaries. Near optimum binder removal schedules deduced from each diagram have been experimentally verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.