Abstract
Wearing masks to protect against communicable diseases is an effective tool used in many countries affected by the COVID-19 pandemic. The antibacterial activity, antibacterial efficiency, microbial purity, and breathability properties of medical disposable masks are very important. Ag is most commonly applied to antimicrobial textiles. In this work, three antimicrobial additives were used. Four compositions of the binders with antimicrobial additives were prepared and applied to one-layer non-woven PP material. The influence of the binder antimicrobial polymer coating on the breathability and antibacterial activity of the non-woven PP material was evaluated. The results show that the composition of the polyacrylic acid binder had the least effect on their breathability and samples with the silver chloride formulation showed the best antimicrobial response. Based on the microbiological and air permeability results of the samples of the one-layer non-woven material with coating, the samples of two layers and three layers of the medical mask model were prepared. Microbiological studies have shown that a three-layered medical mask model with silver chloride composition in the middle layer, on both sides of the model, has antibacterial efficiency against three pathogens (E. Coli, K. Pneumoniae, and S. Aureus). The performance of this medical mask model has been found to meet the requirements for type I medical masks according to the EN 14863 standard. Studies have shown that the microbial purity of the mask model is CFU/g < 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.