Abstract

The technology for obtaining biologically active substances of a lipoid nature, enriched with omega-3 acids, from waste from the processing of hydrobionts by means of electrochemical hydrolysis and cryoconcentration has been developed. A comparative analysis of the composition of wastes from cutting herring and trout is carried out, and the expediency of their use for obtaining biologically active substances of a lipoid nature is shown. A technological scheme has been developed and fat yields have been determined when it is obtained from fish waste by an electrochemical method. The fatty acid composition of the fat obtained by the electrochemical method has been determined. It was found that cryoconcentrated fat obtained from wastes from trout and herring cutting by the electrochemical method has a significantly increased content of omega-3 acids and, accordingly, biological value compared to edible and medical fish oil from the liver of the cod family. It was found that during cryoconcentration, the concentration of polyunsaturated fatty acids increases, reaching values close to 90%, which allows the resulting product to be classified as biologically active additives. It was shown by calculation that to create functional fish-based food products from fish of the salmon family, it is sufficient to introduce 4 g of the obtained biologically active additive per 100 g of the product. There is also an improvement in the organoleptic properties of foods from lean fish species. It has been shown that in order to meet 30% of the recommended daily intake of omega-3 acids in the development of functional food products based on rainbow trout and Atlantic herring, it is necessary to introduce 1.98 g and 1.8 g of cryoconcentrated fish oil. After encapsulation in nanocapsules, the drug will be suitable for enrichment with omega-3 acids in any food products, which is the subject of further research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.