Abstract

The current study aimed to develop an optimal sizing simulation model for an off-grid photovoltaic-wind hybrid power system of an industrial site in Algeria. The loss of power supply probability algorithm was used for sizing our hybrid system. The technical and economic evaluation for the case study showed that the storage system occupied the most critical part of the total investment cost of the hybrid system. The investment cost analysis indicated a unique optimal configuration for each size of the batteries bank. For one day's autonomy, the best size of the hybrid system corresponded to 61 PV panels and 9 wind turbines. Based on a levelized cost of energy analysis, the cost of the batteries represented for this combination is 52% of the total investment cost. The wind turbines accounted for 42% and the PV panels for only 3%. This combination of the hybrid system resulted in an energy cost that was very competitive with most European countries. However, the public energy grid cost in the case study region was still six times lower due to government subsidies. The findings are very encouraging and can help decision-makers adopt alternative and more sustainable solutions in energy policy. These results will aid in determining future research directions in Algeria's hybrid renewable energy systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call