Abstract

Targeted muscle reinnervation (TMR) is a novel approach to postamputation neuroma pain; however, this has not been explicitly studied. The purpose of this study was to develop a TMR model in hind limb amputated rats. Ten hind limbs from 5 Sprague Dawley cadaver rats were used. Sciatic nerve, main branches of the sciatic nerve (common peroneal, tibial, sural), motor branches from the sciatic nerve to the biceps femoris and cauda femoris, gluteal nerve and its motor branches to the semimembranosus, and biceps femoris and femoral nerve were dissected to look for consistent nerve anatomy that can be used for TMR in the rat hind limb amputation model. Transfemoral amputation was performed and two types of coaptations were made: common peroneal nerve to motor branch to biceps femoris and tibial nerve to motor branch to semimembranosus. The total surgical time for the dissection, amputation, and coaptation of nerves was ∼90 minutes. A total of 100 nerves were dissected in 10 rat hind limbs. Anatomical dissections were straightforward to perform. Anatomy of the dissected nerves was consistent. Hind limb amputations were performed without damaging the target muscles and nerves. Nerve lengths were sufficient for coaptation without any tension. To the best of our knowledge, this is the first report on TMR model in hind limb amputated rats. This model will allow for mechanical, electromyography (EMG), and histological analysis for future assessment of neuroma prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.