Abstract
The interests in the biomedical impact of tannic acid (TA) targeting production of various types of biomaterials, such as digital microfluids, chemical sensors, wound dressings, or bioimplants constantly increase. Despite the significant disadvantage of materials obtained from natural-based compounds and their low stability and fragility, therefore, there is an imperative need to improve materials properties by addition of stabilizing formulas. In this study, we performed assessments of thin films over TA proposed as a cross-linker to be used in combination with polymeric matrix based on chitosan (CTS), i.e. CTS/TA at 80:20 or CTS/TA at 50:50 and poly(ethylene glycol) (PEG) at the concentration of 10% or 20%. We evaluated their mechanical parameters as well as the cytotoxicity assay for human bone marrow mesenchymal stem cells, human melanotic melanoma (MNT-1), and human osteosarcoma (Saos-2). The results revealed significant differences in dose-dependent of PEG regarding the maximum tensile strength (σmax) or impact on the metabolic activity of tissue culture plastic. We observed that PEG improved mechanical parameters prominently, decreased the hemolysis rate, and did not affect cell viability negatively. Enclosed data, confirmed also by our previous reports, will undoubtedly pave the path for the future application of tannic acid-based biomaterials to treat wound healing.
Highlights
Polymers have multiple capabilities to be used in targeting production of various types of biomaterials, for instance, digital microfluids, chemical sensors, wound dressings, or bioimplants (Jayaprakash et al 2015; Kang et al 2011; Sarvothaman et al 2015)
We present the results of maximum tensile strength, water vapor permeation rate assessment and we elucidate the material properties in contact with blood determined as hemolysis, and platelet adhesion studies on the other side
The presence of 20% PEG1 enhanced prominently (P < 0.001) σmax compared to CTS/tannic acid (TA) at 50:50 alone reaching the value of 30.46 for CTS/TA at 50:50 + 20% PEG1
Summary
Polymers have multiple capabilities to be used in targeting production of various types of biomaterials, for instance, digital microfluids, chemical sensors, wound dressings, or bioimplants (Jayaprakash et al 2015; Kang et al 2011; Sarvothaman et al 2015). They are known to possess excellent film-forming abilities and are miscible with different types of synthetic and natural compounds (Lewandowska et al 2016).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.