Abstract

Breast cancer is a type of cancer with several sub-types. It occurs when cells in breast tissue grow out of control. The accurate sub-type classification of a patient diagnosed with breast cancer is mandatory for the application of proper treatment. Breast cancer classification based on gene expression is challenging even for artificial intelligence (AI) due to the large number of gene expressions. The idea in this paper is to utilize the genetic programming symbolic classifier (GPSC) on the publicly available dataset to obtain a set of symbolic expressions (SEs) that can classify the breast cancer sub-type using gene expressions with high classification accuracy. The initial problem with the used dataset is a large number of input variables (54,676 gene expressions), a small number of dataset samples (151 samples), and six classes of breast cancer sub-types that are highly imbalanced. The large number of input variables is solved with principal component analysis (PCA), while the small number of samples and the large imbalance between class samples are solved with the application of different oversampling methods generating different dataset variations. On each oversampled dataset, the GPSC with random hyperparameter values search (RHVS) method is trained using 5-fold cross validation (5CV) to obtain a set of SEs. The best set of SEs is chosen based on mean values of accuracy (ACC), the area under the receiving operating characteristic curve (AUC), precision, recall, and F1-score values. In this case, the highest classification accuracy is equal to 0.992 across all evaluation metric methods. The best set of SEs is additionally combined with a decision tree classifier, which slightly improves ACC to 0.994.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.