Abstract

The present research investigates the effects of various concentrations of single-walled carbon nanotubes (SWCNTs) on the viscoelastic and thermomechanical characteristics of styrene-butadiene/ethylene propylene diene polymer (SBR/EPDM) blended polymeric matrices (60:40). Standard elastomeric methods are used to synthesise SWCNTs-reinforced EPDM/SBR nanocomposite blends. The results reveal that high SWCNTs concentrations offer remarkable thermal stability enhancement. SWCNTs reinforced with 0.6 mass% EPDM/SBR become 20% harder, with Tangent Delta values boosted by 70% with maximum cross-linking, elongation enhanced by 38% and tensile strength improved by 35%. With the 38% elongation enhancement, storage modulus is increased by 80%, whereas compressive strain is reduced by 20%. The planned hybrid nanocomposites exhibit viscoelastic characteristics against applied shock, in which the viscous component is associated with spongy structure, whereas the elastic component is associated with spring-like response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.