Abstract
Croscarmellose sodium, generally used as a superdisintegrant in pharmaceutical formulations, is hydrolyzed to form the gel structure under basic pH conditions. Utilizing this property of croscarmellose sodium, we developed a novel sustained release (SR) system. Immediate release (IR) and SR tablets containing croscarmellose sodium, alkaline excipients and/or hydroxypropyl methylcellulose (HPMC) were prepared and examined for wet strength and in vitro drug release behavior. In vivo oral drug absorption was evaluated for IR tablets, HPMC tablets and our novel SR tablets in fasted Beagle dogs. To form the gel structure even under the physiological condition, alkaline excipients were added into the formulation containing croscarmellose sodium. Furthermore, HPMC was used to make the gel structure strong enough against mechanical destructive forces. The novel alkalized croscarmellose sodium-HPMC (ACSH) SR tablet, consisting of croscarmellose sodium, alkaline excipients, and HPMC, successfully sustained the release of acetaminophen, ibuprofen, or nicardipine hydrochloride, compared with the IR tablets. The ACSH SR system provided a better release of acetaminophen than the HPMC tablet without croscarmellose sodium in the release study using a small volume of liquid, suggesting that substantial release and subsequent absorption would be expected in the distal intestinal segments after oral dosing. The in vivo oral absorption study revealed that the ACSH SR system successfully suppressed and prolonged the plasma concentrations of acetaminophen. This novel ACSH SR system prepared with croscarmellose sodium, alkaline excipients, and HPMC, would be a promising SR formulation for enabling substantial drug absorption in the distal intestinal segments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.