Abstract

A novel concept is proposed in which alginate capsules containing a model probiotic Lactobacillus plantarum strain are coated with different surfactants with the aim to enhance cell survival during passage initially through simulated gastric (SGF) and then intestinal (SIF) fluid. The surfactants investigated included the anionic sodium dodecyl sulphate (SDS) and ammonium lauryl sulphate (ALS), the cationic dimethyldioctadecylammonium chloride (DDAC), benzalkonium chloride (BZK) and hexadecyltrimethylammonium bromide (CTAB), and the zwitterionic lecithin. Coating the alginate capsules with CTAB, BZK, ALS and SDS resulted in worst survival (∼4–9 log CFU/g decrease) compared to uncoated capsules (∼3 log CFU/g decrease), after 1 h exposure to SGF and two hours in SIF, which was most likely associated with their gradual penetration inside the microcapsules, as shown by confocal microscopy, and their antimicrobial effects. Coating the alginate capsules with DDAC improved cell survival compared to uncoated capsules (∼1.2 CFU/g decrease), whereas coating with lecithin improved cell survival considerably, resulting in almost complete recovery of viable cells in SGF and SIF (∼0.3 log CFU/g decrease). Although the interaction between alginate and lecithin was relatively weak as demonstrated by turbidity and contact angle measurements, it is likely that the protection was associated with the fact that lecithin was able to penetrate into the capsule rapidly, an observation that was supported by the fact that lecithin enhanced the viability of free cells in SGF and SIF. Lecithin has significant potential of being used as a coating material for probiotic containing capsules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call