Abstract
To detect CO2 leakage from CO2 geological storage, we describe a seismic monitoring method using a continuous and controlled seismic source system, the Accurately Controlled Routinely Operated Signal System (ACROSS). The method applies surface-wave analysis to monitor the shallow subsurface from the temporal-variation (time-variation) of surface-wave phase velocity. Our numerical simulation study for CO2 leakage through fault zones indicated that the spatial distribution of leaked CO2 can be estimated from small temporal-variation of local phase velocities (13%). To demonstrate the method in a field case, we analyzed continuous seismic records acquired with ACROSS. We clearly extracted a dispersion curve of surface waves in the frequency range excited by the ACROSS (5.01515.015Hz). In particular, we obtained reliable estimates of phase velocities in 1015Hz frequency range, in which the time-variation of phase velocities was better than 1% accuracy. This temporal stability was sufficient to allow us to detect changes in phase velocities associated with CO2 leakage before leaked CO2 reached the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.