Abstract
We present the status of the development of Superconducting Tunnel Junction (STJ) detector with the cryogenic preamplifier as far-infrared single photon detector for the COsmic BAckground Neutrino Decay search (COBAND) experiment. The photon energy spectrum from the radiative decay of the cosmic background neutrino is expected to have a sharp cutoff at high energy end in a far-infrared region ranging from 15 meV to 30 meV. The detector is required to measure an individual photon energy with a sufficient energy resolution less than 2% for identifying the cutoff structure, and to be designed for a rocket or satellite experiment. We develop an array of Nb/Al-STJ pixels which can detect a single far-infrared photon delivered by a diffractive grating according to its wavelength. To achieve high signal-to-noise ratio of the STJ, we use a preamplifier made with the Silicon-on-Insulator (SOI) technique that can be operated around 0.3K. We have developed the Nb/Al-STJ with the SOI cryogenic preamplifier and have tested the detector performance around 0.3K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.