Abstract

Buildings in seismic zones are required to provide proper stiffness and load-bearing capacity to resist frequent earthquakes, and possess proper ductility and energy-dissipating capacity to prevent collapse under rare earthquakes. To meet these requirements, the concept of structural energy-dissipation techniques for the bi-functions of load-bearing and energy dissipating are proposed. A number of structural metal energy-dissipation elements, such as buckling-restrained steel plate shear walls, non-buckling corrugated steel plate shear walls, two-level yielding steel coupling beams and energy-dissipative columns, have been developed. They are designed to provide stiffness/strength to guarantee the operation of buildings under frequent earthquakes, but also dissipate energy to reduce seismic effects to a considerable extent for collapse-prevention of buildings. The experimental and theoretical studies on these structural metal energy-dissipating dampers are presented. The efficiency of these structural dampers for disaster mitigation of buildings against earthquakes are also presented to provide a reference for their practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.