Abstract

The paper describes one of the most promising ways of structure health monitoring based on analysis of the kinetics of local stress-strain state. Comparison with other methods of damage detection and advantages of the stress-strain state control are considered. To implement this method of monitoring, two types of sensors are considered: strain gauges and fiber Bragg gratings (FBG). The advantages of FBG, due to which their use in operation is most preferable, are presented. The possibility of using stress-strain state control is analyzed for a promising transport aircraft using the results of tensometry under cyclic loading. The relevance of the work is confirmed by various examples of using monitoring methods in on-board systems during operation. The possibility of monitoring the airframe parts is demonstrated for longitudinal fuselage joints as an example. The change in the stress-strain state of the longitudinal joints, caused by structural damage was confirmed by tensometry analysis and by analysis of the stress-strain state of bearing sheet by the finite element method (FEM), taking into account the fatigue cracks originated during cyclic loading. The results of the calculation are compared with the tensometry data. Proceeding from the results of the calculation of the stress-strain state of the damaged and undamaged structure, the zones of the greatest deformation change are determined to optimize potential locations for the sensors. The optimal placing of the sensors for monitoring the integrity of the joints is proposed. The study confirms that the method of damage monitoring of the structure, developed on the basis of changes in the kinetics of the stress-strain state, can be successfully used in tests for maintaining the integrity of joints and other places with multi-site damages, where the methods of visual and non-destructive testing are not effective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call