Abstract

RNA interference (RNAi) represents a powerful tool with which to undertake sequence-dependent suppression of gene expression. Synthesized double-stranded RNA (dsRNA) or dsRNA generated endogenously from plasmid or viral vectors can be used for RNAi. For the latter, polymerase III promoters which drive ubiquitous expression in all tissues have typically been adopted. Given that dsRNA molecules must contain few 5' and 3' over-hanging bases to maintain potency, employing polymerase II promoters to drive tissue-specific expression of RNAi may be problematic due to potential inclusion of nucleotides 5' and 3' of siRNA sequences. To circumvent this, polymerase II promoters in combination with cis-acting hammerhead ribozymes and short-hairpin RNA sequences have been explored as a means to generate potent dsRNA molecules in tissues defined by the promoter in use. The novel constructs evaluated in this study produced functional siRNA which suppressed the enhanced green fluorescent protein (eGFP) both in vitro and in vivo (in mice). Additionally, the constructs did not appear to elicit a significant type-1 interferon response compared to traditional H1-transcribed shRNA. Given the potential 'off-target' effects of dsRNAs, it would be preferable in many cases to limit expression of dsRNA to the tissue of interest and moreover would significantly augment the resolution of RNAi technologies. Notably, the system under evaluation in this study could readily be adapted to achieve this objective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.