Abstract

The addition of static mixers within reactors leads to higher productivity of a process and an additional increase in mass and energy transfer. In this study, we developed millireactors with static mixers using stereolithography, an additive manufacturing technology. Computational fluid dynamics (CFD) simulations were conducted to study the flow, identify potential dead volumes, and optimize the design of the millireactors. We produced five millireactors with various static mixers and one tubular reactor without static mixers, which served as a reference. The Fenton reaction was performed as a model reaction to evaluate the performance of the millireactors. We observed that some of the reactors with static mixers had air plugs that created a significant dead volume but still exhibited higher conversions compared to the reference reactor. Our results demonstrate the potential of stereolithography for producing intricate millireactors with static mixers, which can enhance the productivity of chemical processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call