Abstract

This study explored the structure and performance of starch-based antibacterial films reinforced with black tea cellulose nanocrystals (BT-CNCs). The optimal addition amount of BT-CNCs is 5 % (w/w Starch). This nanocrystal-infused film, incorporating chitosan (CS), ε-polylysine (ε-PL), and zinc oxide nanoparticles (ZnONP) as antibacterial agents, exhibited a smooth, continuous surface. The addition of BT-CNCs and antibacterial agents did not change the group characteristic peaks of the film, but changed the crystallinity slightly. The films, namely St, St/CNCs, St/CNCs/CS, and St/CNCs/ε-P, maintained high light transmittance (above 80 %), except for the St/CNCs/ZnONP film, which effectively shielded UV radiation. The combined use of antibacterial agents and BT-CNCs enhanced the water and oxygen barrier properties of the film. Notably, the St/CNCs/CS film exhibited the lowest solubility (17.74 % ± 0.36) and the highest tensile strength (14.23 ± 0.16 MPa). The antibacterial efficacy of the films decreased in the order of St/CNCs/ZnONP, St/CNCs/ε-PL, and St/CNCs/CS, with a more pronounced inhibitory effect on E. coli compared to S. aureus. This study marries natural waste recycling with cutting-edge food packaging technology, setting a new benchmark for the development of sustainable packaging materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.