Abstract

Daphnia magna belongs to the Cladocera order and plays an important role in the aquatic ecosystem. With the intensification of water pollution, the wild population of D. magna has declined rapidly in recent years, and insufficient molecular markers have limited effective research and conservation of this species. 26 novel microsatellite (SSR) markers were developed in an artificially domesticated D. magna and 12 wild D. magna populations using restriction site-associated DNA sequencing (RAD-seq). The results showed that the observed heterozygosity (Ho) and expected heterozygosity (He) ranged from 0.083 to 0.999 and 0.085 to 0.862, respectively. The PIC ranged from 0.368 to 0.805. These results indicate that the developed SSR marker is highly polymorphic. Nei's genetic identity (H) ranged from 0.0926 to 0.3462. Shannon's Information index (I) ranged from 0.1333 to 0.4799. Genetic distance and Nei's genetic identity analysis, NJ tree diagram analysis, and PCoA analysis were conducted on populations of D. magna from different regions. The results show that the D. magna genetic relationship between Liaoning and Shanxi, Hunan and Anhui, and Beijing and Hainan are relatively close, while the genetic structure of D. magna in Guangdong, Jiangsu, and Sichuan is quite different from other sampling sites. An analysis of population genetic structure divided the D. magna samples into two major groups. These results indicate that the genetic structure of D. magna differs considerably in different regions. Our research results and the newly developed polymorphic SSR markers for D. magna are of great significance in terms of the genetic breeding of D. magna, identification of wild and artificially domesticated populations and conservation genetics research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call