Abstract

With the aging of bridges, the efficiency of periodic inspections has become a problem. As issues with the continuing close visual inspection of bridges are surfacing, remote imaging systems are expected to become a new inspection method that replaces close visual inspection. The objective of the study is to develop a classification model of countermeasure categories using the results of past periodic inspections of bridges conducted by skilled inspectors. Focusing on concrete slabs, a model was constructed to classify the countermeasure categories based on the characteristics of the damage maps by random forest classification. As a result, it was possible to classify two classes of countermeasure categories with a macro-average precision rate of about 88%. It became clear that the degree of crack development and the number of cracks are the most important factors in the classification of judgment categories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.