Abstract

BackgroundVertebrate somites are subdivided into lineage compartments, each with distinct cell fates and evolutionary histories. Insights into somite evolution can come from studying amphioxus, the best extant approximation of the chordate ancestor. Amphioxus somites have myotome and non-myotome compartments, but development and fates of the latter are incompletely described. Further, while epithelial to mesenchymal transition (EMT) is important for most vertebrate somitic lineages, amphioxus somites generally have been thought to remain entirely epithelial. Here, we examined amphioxus somites and derivatives, as well as extracellular matrix of the axial support system, in a series of developmental stages by transmission electron microscopy (TEM) and in situ hybridization for collagen expression.ResultsThe amphioxus somite differentiates medially into myotome, laterally into the external cell layer (a sub-dermal mesothelium), ventrally into a bud that forms mesothelia of the perivisceral coelom, and ventro-medially into the sclerotome. The sclerotome forms initially as a monolayered cell sheet that migrates between the myotome and the notochord and neural tube; subsequently, this cell sheet becomes double layered and encloses the sclerocoel. Other late developments include formation of the fin box mesothelia from lateral somites and the advent of isolated fibroblasts, likely somite derived, along the myosepta. Throughout development, all cells originating from the non-myotome regions of somites strongly express a fibrillar collagen gene, ColA, and thus likely contribute to extracellular matrix of the dermal and axial connective tissue system.ConclusionsWe provide a revised model for the development of amphioxus sclerotome and fin boxes and confirm previous reports of development of the myotome and lateral somite. In addition, while somite derivatives remain almost entirely epithelial, limited de-epithelialization likely converts some somitic cells into fibroblasts of the myosepta and dermis. Ultrastructure and collagen expression suggest that all non-myotome somite derivatives contribute to extracellular matrix of the dermal and axial support systems. Although amphioxus sclerotome lacks vertebrate-like EMT, it resembles that of vertebrates in position, movement to surround midline structures and into myosepta, and contribution to extracellular matrix of the axial support system. Thus, many aspects of the sclerotome developmental program evolved prior to the origin of the vertebrate mineralized skeleton.

Highlights

  • Vertebrate somites are subdivided into lineage compartments, each with distinct cell fates and evolutionary histories

  • We focus on one somitederived structure at a time and provide a connected account of its development

  • Mesothelia derived from the sclerotome migrate around the midline structures and strongly express collagen gene of amphioxus (ColA); as we propose above, these may contribute to strengthening the axial extracellular connective tissue, similar to teleosts

Read more

Summary

Introduction

Vertebrate somites are subdivided into lineage compartments, each with distinct cell fates and evolutionary histories. Epithelial somites undergo EMT and become subdivided into compartments with distinct tissue fates (reviewed in [1,2]). Comparison across groups of higher vertebrates reveals substantial variation in the position, relative sizes, and inductive mechanisms of the somitic compartments [1,3,4,5,6]. These differences in turn contribute to variation in the position and size of musculoskeletal tissues, which allows functional specializations among different vertebrate groups [7]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.