Abstract

The goal of the present study is to develop a potent and safe vaccine adjuvant that can also stabilize vaccine formulations during lyophilization and storage. Inulin is a safe plant polysaccharide, and in its water soluble isoform, it is known to stabilize protein formulations during storage. However, soluble inulins have never been shown to stimulate the immune system. In this study, for the first time, we showed that water soluble inulins could be developed into vaccine adjuvants by formulating as antigen encapsulated microparticles. A method was developed to prepare soluble inulin microparticles (sIMs) with high encapsulation efficiency (∼75%) and loading (∼75 μg/mg) of the antigen. When immunized in mice, sIMs have generated robust Th2-type antibody titers (IgG1: 500,000) compared to unadjuvanted antigens (IgG1: 17,500) or alum adjuvanted antigens (IgG1: 80,000). In vitro assays showed that a higher proportion of antigen presenting cells (APC's) have taken up the antigen when presented in sIMs versus in solution (99 % vs 22 %). In addition, the amount of antigen taken up per cell has also been enhanced by more than 25 times when antigen was presented in sIMs. Efficient uptake of the antigen by APCs through sIMS was attributed to the observed enhancement in the immune response by antigen loaded sIMs. The sIMs neither caused any granuloma/tissue damage at the injection site in mice nor were they toxic to the APC's in cell culture. In conclusion, the current study has developed a safe, soluble inulin based vaccine adjuvant and delivery system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.