Abstract
The objective of the present investigation was to improve the ocular bioavailability of acyclovir by incorporating it into solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). This required optimization of the process parameters, such as type of lipid, drug to lipid ratios, type and concentration of surfactants, and type and amount of liquid lipids used in the formulations. SLNs and NLCs were prepared by the modified hot oil in water microemuslion method. The prepared nanoparticles were evaluated for their particle size, zeta potential, entrapment efficiency, solid state characteristics, surface morphology, in vitro drug release, and permeation through excised cornea. The prepared nanoparticles were spherical and within the size range suitable for ocular drug delivery (400–777.56 nm). Incorporation of liquid oil in the structure of SLNs resulted in the formation of NLCs with high entrapment efficiency (25–91.64%) compared to SLNs (11.14%). The drug release from SLNs and NLCs was rather a surface-based phenomenon. In comparison to free drug solution, NLCs were capable of having faster permeation through the excised cornea indicating their potential enhanced corneal penetration properties. However, SLNs have reduced the permeation rate significantly. The results of the study suggest that SLNs can be successfully converted to physically superior NLCs, which have the potential to be developed further as ocular drug delivery systems for ACV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.