Abstract
With the phasing out of lead-bearing solders, electrically conductive adhesives (ECAs) have been identified as an environmentally friendly alternative to tin/lead (Sn/Pb) solders in electronics packaging applications. Compared to Sn/Pb solders, conductive adhesive technology offers numerous advantages. However, this new technology still has reliability limitations. Two critical limitations are unstable contact resistance on non-noble metals and poor impact performance. Our previous study indicated that galvanic corrosion was the dominant mechanism for the unstable contact resistance during elevated temperature and humidity aging. The ultimate goal of this study is to formulate conductive adhesives with stable contact resistance and desirable impact performance. In this study, effects of purity of the resins and moisture absorption on contact resistance are investigated. Several different additives (oxygen scavengers and corrosion inhibitors) on contact resistance stability during elevated temperature and humidity aging are studied, and effective additives are identified based on this study. Then, several rubber-modified epoxy resins and a few synthesized epoxide-terminated polyurethane resins are introduced into ECA formulations to determine their effects on impact strength. Tan /spl delta/ of each formulation is measured using a dynamic mechanical analyzer (DMA) and impact strength is evaluated using National Center for Manufacturing Science (NCMS) standard drop test procedure. Finally, high performance conductive adhesives are formulated by combining the modified resins and the effective additives. It is found that (1) purity of the resins and moisture absorption of the formulation affect the contact resistance stability of an EGA; (2) the oxygen scavengers can delay contact resistance shift; (3) one of the corrosion inhibitors studied is very effective in stabilizing the contact resistance; (4) some rubber-modified epoxy resins and the epoxide-terminated polyurethane resins can provide the conductive adhesives with superior impact performance; and (5) conductive adhesives with stable contact resistance and desirable impact performance are developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.