Abstract

In this paper, several numerical models have been presented for predicting the water content of natural gases in equilibrium with liquid water. Machine learning approaches including multilayer perceptron (MLP) neural network, radial basis function (RBF) neural network, and least squares support vector machine (LSSVM) algorithm have been utilized for precise determination of water content of natural gases.The presented models work for pressures up to 69 MPa and temperatures between 298.15 and 450.15 K as well as acid gas mole fractions up to 0.4. With accordance to the error analysis results it was found that the proposed LSSVM, RBF, and MLP models reproduce targets with the average absolute relative deviations (%AARD) being less than 2.8%, 4.1%, and 7.7%, respectively. Coefficients of determination values of the developed models are found to be greater than 0.99, illustrating good association of the predictions with corresponding reported data in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.