Abstract

BackgroundFlavonoids are an important class of secondary compounds in angiosperms. Next to certain biological functions in plants, they play a role in the brewing process and have an effect on taste, color and aroma of beer. The aim of this study was to reveal the haplotype diversity of candidate genes involved in the phenylpropanoid biosynthesis pathway in cultivated barley varieties (Hordeum vulgare L.) and to determine associations to kernel and malting quality parameters.ResultsFive genes encoding phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS), flavanone 3-hydroxylase (F3H) and dihydroflavonol reductase (DFR) of the phenylpropanoid biosynthesis pathway were partially resequenced in 16 diverse barley reference genotypes. Their localization in the barley genome, their genetic structure, and their genetic variation e.g. single nucleotide polymorphism (SNP) and Insertion/Deletion (InDel) patterns were revealed. In total, 130 SNPs and seven InDels were detected. Of these, 21 polymorphisms were converted into high-throughput pyrosequencing markers. The resulting SNP and haplotype patterns were used to calculate associations with kernel and malting quality parameters.ConclusionsSNP patterns were found to be highly variable for the investigated genes. The developed high-throughput markers are applicable for assessing the genetic variability and for the determination of haplotype patterns in a set of barley accessions. The candidate genes PAL, C4H and F3H were shown to be associated to several malting properties like glassiness (PAL), viscosity (C4H) or to final attenuation (F3H).

Highlights

  • Flavonoids are an important class of secondary compounds in angiosperms

  • The aim of the present study was (i) the assessment of allelic diversity of genes representing the phenylpropanoid pathway in barley and (ii) the determination of significant associations of the detected single nucleotide polymorphisms (SNPs) or their resulting haplotypes with kernel and malting quality parameters

  • SNP Patterns and marker development Five genes of the phenylpropanoid metabolic pathway were investigated for their abundance of polymorphisms and for associations to kernel and malting quality parameters, which will be further described

Read more

Summary

Introduction

Flavonoids are an important class of secondary compounds in angiosperms. The aim of this study was to reveal the haplotype diversity of candidate genes involved in the phenylpropanoid biosynthesis pathway in cultivated barley varieties (Hordeum vulgare L.) and to determine associations to kernel and malting quality parameters. Important breeding aims are to enhance the malting quality next to the improvement of yield components. All genes studied here are part of the phenylpropanoid pathway, coding especially for enzymes of the flavonoid synthesis pathway. Their gene products represent the mostly abundant group of secondary metabolites in angiosperms [7]. Starting from the general phenylpropanoid metabolism phenylalanine is deaminated to cinnamate catalyzed by the phenylalanine ammonia-lyase (PAL). The cinnamate 4-hydroxylase (C4H) hydroxylates the product to coumarate, which is converted to 4-coumaroyl

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.