Abstract

In this work, we have a demonstrated zinc oxide (ZnO) polymer-based ecofriendly piezoelectric nanogenerator (PENG) on a paper substrate for an energy harvesting application. The ZnO thin film is developed on the paper substrate, where different doping concentrations of Sn have been investigated systematically to validate the effect of doping towards enhancing the device performance. The piezoelectric potential of the fabricated device is evaluated by applying three different loads (4 N, 8 N, 22 N), where the source of the corresponding mechanical loads is based on the object of a musical drum stick. The results suggest that the pristine ZnO PENG device can generate a maximum output voltage and current of 2.15 V and 17 nA respectively. Moreover, the ZnO PENG device doped with 2.5% Sn achieved an even higher voltage (4.15 V) and current (36 nA) compared to pristine ZnO devices. In addition, the hydrothermal growth technique used to develop Sn-doped ZnO has the benefits of high scalability and low cost. Hence, the Sn-doped PENG device is a suitable candidate for energy harvesting applications operating in both uniform and non-uniform loading conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.