Abstract
The growth and differentiation of smooth muscle in the chicken gizzard were studied by electron microscopy from the 10th day in ovo to 6 months after hatching; during this period the organ grows 1000-fold in weight. At the earliest stage studied, smooth muscle cells, interstitial cells, and fibroblasts are immature but can already be clearly distinguished. The structural components of muscle cells develop in a characteristic sequence. Mitochondria are more abundant in immature muscle cells (8% in 14 days embryos and 7% in 19 days embryos) than in the adult (5%). Caveolae are virtually absent in the 11 day embryo; they become more common at the end of embryonic life, but continue to increase in relative frequency after hatching. Gap junctions appear around the 16th day in ovo as minute aggregates of connexons, which then grow in size, probably by addition of new connexons. In the earliest stages studied, myofilaments occupy 25% of the cell profile and are assembled into bundles accompanied by dense bodies and surrounded by loosely arranged intermediate filaments. By contrast, membrane-bound dense bands are scarce until the latter part of embryonic life, an observation suggesting that myofilament formation and alignment is not a process initiated near the cell membrane or directed by the cell membrane, and that only late in development bundles of myofilaments become extensively anchored to dense bands over the entire cell surface: at that time myofilaments occupy more than 75% of the cell volume. The muscle cells increase about four-fold in volume over the period studied; the 1000-fold increase in muscle volume is mainly accounted for by an increase in muscle cell number. Mitoses are found in the gizzard musculature at all embryonic ages with a peak at 17-19 days; they occur in muscle cells with a high degree of differentiation. These cells divide at a stage when they are packed with myofilaments and form junctions with neighbouring cells: the mitotic process affects the middle portion of the cell, which takes up an ovoid shape and eventually divides, whereas the remaining portions of the cell do not differ in appearance from the surrounding muscle cells. At all stages of development the population of muscle cells has a uniform appearance (apart from the cells in mitosis), and the growth and differentiation seem to proceed at the same pace in all the cells. There are no undifferentiated cells left behind in the tissue for later development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.