Abstract

Abstract Feedrate optimization is an important aspect of getting shorter machining time and increase the potential of efficient machining. This paper presents an autonomous machining system and optimization strategies to predict and improve the performance of milling operations. The machining process was simulated and analyzed in virtual machining framework to extract cutter-workpiece engagement conditions. Cutting force along the cutting segmentation is evaluated based on the laws of mechanics of milling. In simulation, constraint-based optimization scheme was used to maximize the cutting force by calculating acceptable feedrate levels as the optimizing strategy. The intelligent algorithm was integrated into autonomous machining system to modify NC program to accommodate these new feedrates values. The experiment using optimized NC file which generates by our smart machining system were conducted. The result showed autonomous machining system, was effectively reduced 26%. Highlights The smart machining system was implemented in the CNC machine. Optimal feed rates enhance machine tool efficiency. The smart machining system is reliable to reduce machine time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call