Abstract
Magnetic particle imaging (MPI) is an emerging noninvasive molecular imaging method that can image the concentration and position of superparamagnetic iron oxide nanoparticles. Its applications in the biomedical field are increasing rapidly. However, the scalability of MPI is the major barrier to its clinical use at the moment. For a large bore size of MPI, it is important to achieve a high magnetic gradient for high image resolution with a large field-of-view (FOV) while allowing fast scanning and high sensitivity. In this article, we present a small-rabbit-scale three-dimensional (3-D) amplitude modulation (AM) MPI system with a bore size of 90 mm and a high magnetic gradient of up to 4 T/m/μ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> . The AM MPI with a soft core can allow a large FOV and good resolution while minimizing the peripheral nerve stimulation constraint and hardware requirements. This new design guideline and optimum design parameters of 3-D AM MPI for scalability were suggested and verified by simulation and experimental studies to allow fast scanning with high resolution and high sensitivity while avoiding vibration and heating issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.