Abstract

[abstFig src='/00280005/06.jpg' width='300' text='Developed device' ] According to a worldwide WHO survey, about one-third of people at the age of 65 or older experience at least one fall a year, which may result in a severe injury. Meanwhile, the population of the developed world is increasingly aging, and fall incidents can be therefore considered as a global problem. The causes of falls include the weakening of the tibialis anterior and gastrocnemius muscles that respectively play important roles in the dorsal and plantar flexion of the foot, and deterioration of the functions necessary to recover balance from perturbations during gait. Such dysfunctions are treated with rehabilitation provided by physical therapists and with special gait training in which the patient is subjected to perturbations. Although devices for rehabilitation and gait training have been developed, they are problematic since they only allow the ankle joint to move at a low number of degrees of freedom (DOF). In this study, we developed an ankle foot orthosis to provide six-DOF control of the ankle joint using a parallel link mechanism known as a Stewart platform. The Stewart platform construction makes it possible to provide six-DOF control. Since the ankle foot orthosis can be applied to walking, it can assist walking or gait training. In one of our prior studies, we proposed a force control method for the device, and verified its accuracy. In the present study, we improved the attachment method and introduced a pressure sensor to the previous version of the device to allow implementation of a new method that enables control adapted to the human gait. In addition, we conducted four experiments to verify whether it is possible to reproduce the physical therapist’s rehabilitation manipulations without limiting the ankle joint’s DOF, provide arbitrary walking assist action, and impart perturbations to the subject during gait. The first experiment verified the device’s accuracy in reproducing motion, the second confirmed the dispersion of the reproduced motion, the third assessed the walking-assist performance to prevent trips, and the fourth ascertained whether it is possible to make the subject lose balance by the imparted perturbation. The results demonstrated that the motions can be reproduced with high accuracy and with low dispersion and that the ankle joint motions can be controlled adaptively to fit the subject’s gait, suggesting the usefulness of the proposed device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call