Abstract

An indirect resistance spot welding process with single-side electrode access was developed for automotive applications. The variable controls of electrode force and welding current during welding were studied in order to achieve the promotion of weld nugget formation and the suppression of expulsion without sacrificing the productivity and design flexibility of automobiles. The welding experiments were performed on lapped test coupons of 0.7-mm-thick cold-rolled sheet with tensile strength of 270 N/mm2 and 1.6-mm-thick cold-rolled sheet with tensile strength of 980 N/mm2 using a resistance spot welding system consisting a servo-motor-controlled welding gun and an inverter DC power supply. Welding experiments verified that the occurrence of expulsion and formation of molten nugget were significantly influenced by the heat generation and melting process at an initial period during welding and manageable by applying the variable patterns of electrode force and welding current. When welding was performed under the large shunting condition simply with the constant force and current pattern of 400 N in electrode force, the appropriate current range was less than 1 kA. On the other hand, it extended to 2.6 kA when performed with the variable force and current pattern of 800 N in force and 4 kA in current at the first stage and 400 N in force at the second stage, confirming the fact that the variable pattern successfully suppressed the expulsion and promoted the nugget formation. Numerical simulations were conducted to compare the difference in welding phenomena between the constant force and current pattern and the variable force and current pattern and clarified that the effect of variable force and current pattern on the promotion of nugget formation and the suppression of expulsion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call