Abstract

In the design assessment of fast reactor plant components, prevention of crack initiation from defect-free structures is a main concern. However, existence of initial defects such as weld defects cannot be entirely excluded and this potential cracks are to be evaluated to determine if initiated cracks do not lead to component failure instantly. Therefore, evaluation of structural integrity in the presence of crack-like defects is also important to complement the formal design assessment. The authors have been developing a guideline for assessing long-term structural integrity of fast reactor components using detailed inelastic analysis and nonlinear fracture mechanics. This guideline consists of two parts, evaluation of defect-free structures and flaw evaluation. In the latter, creep-fatigue is considered to be one of the most essential driving force for crack propagation at high operating temperature exceeding 500 °C. The uses of J-integral-type parameters (fatigue J-integral range and creep J-integral) are recommended to describe creep-fatigue crack propagation behavior in the guideline. This paper gives an outline of the simplified evaluation method for creep-fatigue crack propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call