Abstract

Skin and soft tissue infections involve microbial invasion of the skin and underlying soft tissues. To overcome this problem, nanocomposites were obtained using gelatin as a biopolymer scaffold and silver nanoparticles as a wide spectrum antimicrobial agent. Water and glycerol have been used as solvents for the gelatin hydrogel synthesis. This mixture led to a stable and homogeneous biomaterial with improved mechanical properties. Silver nanoparticles were characterized using SEM, EDS and TEM. Moreover, the AgNp/gelatin nanocomposite obtained using these nanoparticles was characterized using SEM and FTIR. Moreover, mechanical and swelling properties were studied. The storage modulus was 3000 Pa for gelatin hydrogels and reached 5800 Pa for AgNp/gelatin nanocomposite. Silver nanoparticles have been studied as an alternative to antibiotics. Importantly, the rate of silver release was modulated as a function of the temperature of the nanocomposite. Thus, the silver release from the nanocomposites at 24 °C and 38 °C was analyzed by atomic absorption spectroscopy. The silver release reached 25% after 24 h at 24 °C, while a 75% release was achieved at 38°C in the same period, showing the material thermoresponsive behavior. AgNp/gelatin nanocomposite showed a deleterious effect over 99.99% of Pseudomonas aeruginosa and Staphylococcus aureus, leading to a material with antimicrobial properties. AgNp/gelatin nanocomposite with improved mechanical properties and silver nanoparticles as a source of silver ions has been synthesized. The properties of the nanocomposite with controlled silver delivery result in a more efficient topical pharmaceutical form for wound healing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call