Abstract

The present work was aimed at developing stability enhanced silica gel-supported macroporous chitosan membrane for immobilization of enzymes. The membrane was surface modified using various cross-linking agents for covalent immobilization of enzyme Bovine serum albumin. The results of FT-IR, UV-vis, and SEM analyses revealed the effect of cross-linking agents and confirmed the formation of modified membranes. The presence of silica gel as a support could provide a large surface area, and therefore, the enzyme could be immobilized only on the surface, and thus minimized the diffusion limitation problem. The resultant enzyme immobilized membranes were also characterized based on their activity retention, immobilization efficiency, and stability aspects. The immobilization process increased the activity of immobilized enzyme even higher than that of total (actual) activity of native enzyme. Thus, the obtained macroporous chitosan membranes in this study could act as a versatile host for various guest molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.