Abstract

Carbide-free bainite (CFB) microstructures containing a mixture of nano-sized retained austenite laths and bainitic ferrite exhibit a good combination of strength, ductility, and toughness. In this work, an attempt was made to identify welding electrode compositions with a carbon content of about 0.35 to 0.5 wt.% to achieve carbide-free bainite microstructures in multi-pass shielded metal arc welds. Suitable alloy compositions were designed using a commercial neural network–based database, considering thermodynamic parameters such as allotropic phase boundary (XTo), ΔGɣ-ɑ (driving force for transformation) and martensite start temperatures. Three different alloy compositions were identified using this approach. Shielded metal arc welding (SMAW) electrodes were fabricated with the compositions identified and the samples extracted from the weld deposits were used for dilatometer studies, metallurgical characterisation, and mechanical property evaluation. Based on the results, an optimised electrode composition and welding parameters were identified to stabilise the carbide-free bainitic microstructures in weld metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.