Abstract

Biobased packaging is an essential parameter in the pharmaceutical industry. In the present work, bio-composites consisting of high-density polyethylene (HDPE) as a matrix and lignin recovered from argan nut shells as filler were developed to investigate their potential use as packaging materials for vitamin C drugs. The lignin was extracted via alkali and klason processes, and the effects of the extraction method as well as the lignin content on the thermal, morphological, mechanical, and rheological properties of the produced composites, as well as their application for vitamin C packaging, were investigated. Among all the prepared packaging materials, the one with desirable results in pH, color stability, hardness, and mechanical characteristics was based on alkali lignin. It achieved its highest Young's modulus enhancement, 10.12 %, at 10 % alkali lignin loading, while the highest yield strain enhancement (4.65 %) was obtained with 2 % loading. When compared to neat HDPE and HDPE/klason lignin packaging materials, vitamin C solutions packed with this composite showed a lower oxidation rate, attributed to the extremely low pH variation and high color stability of the material, which decreased the rate of vitamin C degradation. According to these findings, HDPE/alkali lignin composite is a promising vitamin C syrup packaging material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call