Abstract

This investigation provides a light and electron microscopic examination of the development of serotonin-like immunoreactivity and structure of the apical sensory organ (ASO) in embryos and/or larvae of four nudibranch species: Berghia verrucicornis, Phestilla sibogae, Melibe leonina, and Tritonia diomedea. Serotonin-like immunoreactivity is first expressed in somata, dendrites, and axons of a group of five distinct neurons within the ASO. These neurons extend axons into an apical neuropil, a structure that is situated centrally and immediately dorsal to the cerebral commissure. Three of these neurons possess sensory dendrites that extend through the pretrochal epithelium, each supporting two cilia at their distal ends. Later development of serotonin-like immunoreactivity includes 1) axons from the apical neuropil that extend into each of the velar lobes; 2) neuron perikarya in the cerebral and pedal ganglia; 3) axons that extend through the cerebral commissure, cerebral-pedal connectives, pedal commissure, and possibly the visceral loop connective; and 4) axons extending from each pedal ganglion into the larval foot. Ultrastructurally, the ASO can be seen to be composed of three lobes and an apical neuropil that is separately delineated from the cerebral commissure. Four cell types are present within the ASO: ciliary tuft cells, type I and type II parampullary neurons, and ampullary neurons. Immunofluorescence and 3,3' diaminobenzidine tetrahydrochloride (DAB) labeling verify that the serotonergic neurons of the ASO are type I and type II parampullary neurons. The ampullary and type I parampullary neurons possess dendrites that extend through the pretrochal epithelium. These dendrites are partitioned into three bundles, one on either side of the ciliary tuft cells and a third bundle penetrating the pretrochal epithelium centrally between the ciliary tuft cells. One serotonergic type I parampullary neuron is associated with each of these bundles. Two ampullary neurons are associated with each of the lateral dendritic bundles, while the central bundle includes only one. Ultrastructural analyses of serotonergic axonal innervation arising from the ASO agree with those determined from fluorescently labeled material. The structure of the ASO and its associated serotonergic axons suggest that the serotonergic component of this structure senses environmental stimuli affecting velar function, possibly the contractility of muscle fibers in the velar lobes. Similarities and differences among the ASOs of embryos and larvae from various invertebrate phyla may provide useful data that will assist in the reconstruction of phylogenetic relationships.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call